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IONIZATION OF NO AT HIGH TEMPERATURE"

C. Frederick Hansen'"

INTRODUCTION

Space vehicles flying through the atmosphere at high speed are

known to excite a complex set of chemical reactions in the

atmospheric gases, ranging from simple vibrational excitation to

dissociation, atom exchange, electronic excitation, ionization, and

charge exchange. The major reactions in high temperature air were

measured in the 1960's, generally in shock tubes, at temperatures

up to about 10000°K; and Arrhenius type equations were then fit to

the observed rate coefficients. Although rate data is typically

rather scattered, even for measurements made with a fixed

experimental arrangement--and different experiments often yield

widely different results--yet for some engineering purposes the
uncertainties are not excessive. This occurs because endothermic

rate coefficients, at least, change so rapidly with temperature

that in flow field calculations where temperature gradients are

high, as they are in the blunt body regions or boundary layer

regions of high velocity vehicle flow, the uncertainties in the

rate coefficient have a minor effect on species concentration and

thermodynamic properties as a function of distance along the flow.

However, the exothermic rate coefficients can introduce

significant uncertainties in cooler regions of flow such as the

inner boundary layers adjacent to the body surface or in the

expansion flow along the aft part of the vehicle and in the

vehicle's wake. Moreover, the rate coefficients are now needed at

much higher temperature and lower density than formerly, for

application to the new class of space vehicles planned, such as the

AOTV--Aeroassisted Orbit Transfer Vehicle. Temperatures up to

40000°K are well beyond the range that seems accessible to

experiment and extrapolation of the formulae which fit the lower

temperature data is uncertain unless a theoretical model can be

devised to justify the extrapolation. Finally, the new class of

space vehicles will decelerate at very high altitude (more than 60

km. above the earth's surface) where the density is so low that the

shock heated gases will often not be in either thermal or chemical

equilibrium. Since most of the measured reaction rates have been

made at conditions where equilibrium is believed to obtain, a

theoretical model is also desired which can treat particularly the

effects of vibrational and electronic nonequilibrium on the rate

processes.

The purpose of this paper is to develop simple arguments for

the temperature dependence of the reactions leading to ionization

of NO, including the effect of vibrational-electronic thermal

nonequilibrium. NO ionization is the most important source of

electrons at intermediate temperatures and at higher temperatures
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provides the trigger electrons that ionize atoms. Based on these

arguments, recommendations will be made for formulae which fit

observed experimental results, and which include a dependence on

both a heavy particle temperature T and different vibration-

electron temperatures Tv and T.. In addition, these expressions

will presumably provide the most reliable extrapolation of

experimental results to much higher temperatures.

TEMPERATURE DEPENDENCE OF EXOTHERMIC AND ENDOTHERMIC REACTIONS

The rate coefficient for a two-body collision induced reaction

can be expressed quite rigorously as the reaction cross section S

times the collision velocity integrated over a Maxwell-Boltzmann

distribution of collision energies I.

k - u f S(x)x e -x dx Eq. (i)s
0

where u is the mean velocity of the collision pair in center of

mass coordinates, s is the symmetry number--unity for dissimilar

particles, two for similar particles, and x is the dimensionless

collision energy in units of kT (i.e. x = E/kT = _u2/2kT).

If the collision is exothermic with no activation energy, the

cross section is expected to be a relatively slowly varying

function of energy. For example, if the cross section varies

inversely with the m th power of collision energy

S S° - (kT) m So Eq.(2)
E _ x m

then the integral of Eq. (I) is analytic if m < 2

k_x o - uS° F (l-m) _ T-Ira-i�2)
(kT) "

Eq.(3)

However, when the reaction is endothermic, the integration is

performed over x only from Xo to infinity, or over all y = (x - Xo),

the dimensionless energy in excess of the threshold energy Xo.

k - u S(y) (xo+y) e-Ydy e -x°
s

Eq.(4)

Eq.(4) is the form of the usual Arrhenius expression for
endothermic reaction



k - C(TO e -sJkT Eg. (5)

where the temperature dependence of the preexponential factor

depends on the average collision velocity u and the definite

integral determined by the shape of the cross section function S(y)

C(T) - u f S(y) (Xo+Y) e -y dy Eq.(5a)
S

0

An additional factor that needs be considered is that while

highly excited electronic states do not contribute much to

exothermic reaction because their population numbers decrease so

rapidly, the endothermic reactions to not usually occur from the

ground state but from excited electronic states that have

activation energies the order of kT. The exponential decrease in

population number of the excited state is balanced by the

exponential increase in the rate coefficient due to the lower

activation energy. The total rate coefficient is the sum of rate

coefficients from each state i weighted by the probability that the

i_ state is involved in the collision. This remains an expression

like Eq.(5) with the same activation energy Eo

k- _kl (_) - I---_i giCi(T) e (E°-S_)/kre Ei/kTiQ

1 e - Eo/kT

Eq.(5b)

where n_ and n are respectively the densities of the reactive

molecule in the i_ state and the total number density of all

states. The preexponential term is a sum of all the preexponential

terms CI(T) weighted with the degeneracies gl divided by the

partition function Q; these sums may include all the rotational and

vibrational states of internal energy as well as electronic states.

The temperature dependence of endothermic reaction is

dominated by the exponential factor exp(-Eo/kT) whenever the

activation energy Eo is large compared with kT. Then it is not

possible to arrive at a good estimate for the temperature

dependence of the preexponential term from experimental data

because the slope of an Arrhenius plot of in(k) as a function of

i/kT is very nearly -_ no matter what preexponential function is

chosen. For example, an endothermic rate coefficient that has been

widely used 2'_ for the heavy particle impact dissociation of 02 is
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k - 3.74xi0 Is e-594OO/T cc/mol-sec Eq.(5c)
T

However, as Fig.(1) shows, the slope of the Arrhenius plot is

changed very little if the exponent on the preexponential

temperature term is changed ±1/2. This particular example is

chosen to illustrate the point because the data provided by Camac

and Vaughan 2 on 02 dissociation by Ar impact is about the least

scattered data for high temperature endothermic reaction that has

been obtained. Still enough scatter remains so that the least

squares deviation is almost the same for any one of the three
functions shown. In most cases the scatter in measured rate

coefficients is much greater; thus the best way to arrive at the

correct temperature dependence of rate coefficients is to determine

the exothermic rate, if possible, and then calculate the

endothermic rate with the equilibrium constant, which is a well

known expression involving the partition functions of the

chemically reacting species.

To develop the analysis further, the shape of the reactive

cross section as a function of collision energy must be given,

either as an experimentally measured parameter, or as a theoretical
estimate.

REACTION CROSS SECTION THEORY

Various empirical or semiempirical approximations have been

tried for the reactive cross section. Qualitatively the cross

section must vanish at collision velocities less than the

activation energy, then it increases rather rapidly as collision

energy exceeds the threshold, maximizes at something less than the

total scattering cross section, and finally decreases at much

higher collision energies. Hansen 4 has suggested a cross section

function for collision induced dissociation of 02, N2, and NO which

increases as the square of the excess collision energy above

threshold and eventually decreases as I/E

S
2 (I-Eo/E) 2 (Eo/E) Eq. (6)

So

This cross section is based on arguments that involve the

conservation of angular momentum in repulsion and the assumption

that the probability of no transition at the crossing of reactant

and product potential surfaces increases linearly with collision

energy in excess of the activation energy. The results are roughly

similar to an empirical function proposed by Lotz 5 and recommended

by Park 6
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S in (E/E o)

S o E� E o
Eq. (7)

This function has a shape similar to experimental measurement of H

atom ionization' and N atom ionization' by electron impact. However

both of these functions peak at much lower energies than required

to agree with molecular ionization cross sections by heavy particle

impact measured by Utterback' and Utterback and VanZyl I°.

Perhaps the most complete model of reactive cross sections

presently available is due to Landau _I and Zener I_. A brief review

of their theory will establish the basis for subsequent analysis in

this paper. Transition from a reactant system to a product system

is presumed to occur within a narrow range of intermolecular

distance ro where the potential surfaces of the reactant and product

systems cross, or at least come very close to one another. The

situation is diagrammed in Fig.(2) for repulsive potentials leading

to endothermic reaction. The potential of the reactants at

infinite separation is taken as the reference zero and the

potential at the crossing point is Eo. This will also be the

activation energy E" if the potential surfaces are repulsive as

shown on Fig.(2). However, if the potential of the product system

should have a minimum, E" can then be greater than Eo. The initial

collision energy E is conserved and after the reaction the kinetic

energy of the product species is E less the change in zero point

energy of the chemical species involved. The product system

potential is often only weakly repulsive, in which case the change

in zero point energy, E°, and the activation, E', are about equal.

If q is the probability that transition does not occur as the

system crosses the reaction zone, (l-q) is the probability that

transition does occur. Then q(l-q) is the probability that

transition does not occur during the incoming crossing but does

occur outgoing. Similarly (l-q)q is the probability that

transition occurs incoming and is not undone outgoing. Thus the

total probability of transition during the collision is

P - q(l-q) + (l-q) q - 2q(l-q) Eq.(8)

Landau and Zener develop an exponential expression for q

q - exp - e -alu
Eq.(9)
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where u is the velocity with which the system crosses the reaction
zone and the matrix elements are the total Hamiltonian of the

system averaged over the initial and/or final state wave functions

Hik - < _ IHI _i > Eq.(10)

H_I and H22 are just the potential surfaces of the reactant and

product systems respectively. The gradients of these potentials

and the interaction energy H12 are all evaluated at ro. In general

neither the potentials, nor their slopes, nor the interaction

energy are known, but they are all constants which can be gathered

in the parameter a in Eq.(9), a constant with the dimension of

velocity. The assumptions used in the Landau-Zener treatment leave

some doubt about the exact quantitative results in any case, but if

the functional relations are reliable, the constant a can be

established by comparison with measured reaction cross sections

and/or measured rate coefficients wherever these are available.

The following analysis considers the special case where both

reactant and product potentials are repulsive and spherically

symmetric with the activation energy the same as the crossing

potential Eo. If the collision is head on, that is with miss

distance b equal zero, the crossing velocity Uo is (2(E-Eo)/_) I_2, the

velocity of the system in center of mass coordinates when it has

slowed from the kinetic energy E at infinite separation to the

remaining kinetic energy at the crossing region. However,

practically all the collisions approach with miss distance somewhat

greater than zero. The maximum miss distance b, which allows the

system to reach the reaction coordinate ro is

( oi
roJ

Eq.(li)

This relation obtains because of conservation of angular momentum

and does not depend on the shape of the repulsive interaction I.

However at the maximum miss distance b. the system just grazes the

crossing surface with zero crossing velocity. At intermediate miss

distances the crossing velocity will decrease monotonicly from uo

at b = 0, slowly at first, and then rapidly approach zero as b

approaches b.. The exact shape of the crossing velocity u(b) will

depend on the shape of the repulsive potential. Whatever the exact

shape may be, it should be possible to approximate the probability

q(b) with a function of the type

q(b) - e -a/u(b) , e-a/uo[l_(b/bm) d] Eq.(12)

where d is a constant coefficient chosen to fit the true relation.
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The reaction cross section for the collision energy E can then be

expressed

bm

S(E) - 2_f 2q(b) [l-q(b)]bdb
J Eq. (13)
O

(d e-a/uo d-l e-2a/uo )

A slow decrease in q(b) is expected near b=0 in which case d should

be considerably larger than unity. Then the integral of Eq.(13) is

approximately independent of the coefficient d

S(E) 2 (I-Eo/E) [e -cl(EIE°-1)In -2cl(z/E°-1)w2]- e Eq. (13a)
So

The constant So is _ro 2 times the fraction of collisions that

approach along the potential surface leading to transition. The

dimensionless parameter c is related to the constant velocity

parameter a

<2 o)

The object has been merely to establish a reasonable

functional relation between the cross section and the collision

energy. The constants So and c are simply chosen to agree with

experimental data.

Fig.(3) shows the log(S/So) for the Landau-Zener form of cross

section as a function of log(E/Eo) for a variety of the constants

c equal to I, 5, I0, 20, and 30. Wherever experimental values may

be available, the maximum in the function can be established at the

observed value by the choice of c; then the magnitude of the cross

section is matched by the choice of So. In addition, Fig.(3) shows

the more empirical functions proposed'". These more or less match

the maximum given by the Landau-Zener model when c is a little less

than unity, but they fall off much more rapidly for high energy

collisions. This difference will not affect the integrations that

provide the rate coefficient very much as long as temperature is

small compared with Eo/k, but can make a difference at much higher

temperature. Also shown on Fig.(3) are the measured cross

sections for NO ionization by N, collision'. For this reaction, at

least, a constant c about I0 is appropriate. Utterback finds some

structure in this cross section, a very small hump near threshold,

which no doubt indicates another reaction path. However this makes

a negligible contribution to the rate coefficient integral and so

is ignored here. The difference between the measurements and the
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theoretical model is accentuated on the log plot; a better

indication of the comparison between the two as far as the rate

coefficient integral is concerned is a plot of S as a function of

E/Eo as shown on Fig.(4). This figure shows the kind of fit to

experiment that can be achieved with the Landau-Zener theory; in

contrast, the empirical function In(S/So)/(S/So) is seen to peak at

collision energies far below the observed peak and to fall off much

too rapidly at higher energies. The same is true of the function

of Eq.(6). While those empirical functions may approximate

realistic cross sections for electron impact ionization or for

dissociation by heavy particle impact, they certainly do not

provide good cross sections for ionization of NO by N2 impact. The

Landau-Zener model is a far more flexible function that can better

fit experimental data, to say nothing of the confidence provided by

the theoretical foundation for the function.

DISSOCIATIVE ELECTRON RECOMBINATION NO r + e _ N + O

The most important mechanism for ionization in

moderately high temperature (the order of 5000°K or so)

collision between N and O atoms

N + 0 _ NO t + e

air at

is the

Eq.(14)

Because of the importance of this reaction, numerous measurements

of both the endothermic and exothermic rate coefficient have been

made. However, the scatter in the data is severe as shown by the

exothermic rates plotted on Figure (5). Thus some uncertainty

still exists about the exact rates for the reaction.

The measured exothermic rate coefficients will be of most

interest here because these have the best chance of providing the

correct temperature dependence for the rates, as discussed above.

The first high temperature evaluation of the exothermic rate was

provided by Lin and Teare 13. They found a T -312 dependence of the

exothermic rate, and chose the constant to agree with low

temperature data of Doering and Mahan 14.

kexo _ 1.8 x i021
T _/2 cc/mol-sec Eq.(15a)

Subsequent experiments _5-I' confirmed the low temperature result

rather well as shown on Fig.(5) (estimates of Whitten and Poppoff TM

were based on upper atmosphere airglow measurements and probably

are not as reliable as the laboratory measurements). However,

except for some results reported by Daiber 2°, the measured high

temperature rates have generally been higher than Eq.(15a).

Thompson 21 suggested that Lin and Teare's results should be

increased by a factor of 3, and Frohm and DeBoer n observed that a



factor of 2 increase actually gives a better fit to Lin and Teare's
original data. Results reported by Bascomb, et a123 and by Stein,
et a124 appear to confirm the higher value.

Since Lin and Teare's exothermic rate was deduced from
measurements of the endothermic process, the functional dependence
could be in question, as shown previously. However, Dunn and

Lordi _ observed the electron recombination process directly in

expanding flow from a high temperature shock tunnel. They

confirmed the same temperature dependence but with a somewhat

larger rate

kexo . 6.7±2.3 x 10 21
T3/2 cc/mol-sec Eq.(15b)

Extrapolation of this function to lower temperature lies above most

of the data there. Hansen 26 argued that at low temperature the

relation should change to a T °II_ dependence because of the

dependence of the equilibrium constant on temperature. Although

this argument was based on an endothermic rate calculated for a

constant transition probability at the potential crossing for the

NO + and N+O systems, which is unrealistic, the same change in the

functional trend will be found for an approximate endothermic rate
based on the Landau Zener model of reaction.

Two recommendations made by critical reviewers of rate data

are shown by the dotted lines on Fig.(5). Bortner 27 reviewed the
literature available before 1969 and recommended

kexo . (1.5±2.9) x 10 21
T3/2 cc/mol -sec Eq. (15c )

Blottner 27 recommended a slightly different function

_exo " 1.8 x 1019 cc/mol-sec
T

Eq.(15d)

which has been widely used in flow field calculations 3.

The discussion above is sufficient to indicate a considerable

degree of uncertainty in the rate constants for Eq.(14), in part

due to the large number of different experimental investigations of

the reaction. In addition, an account of the effect of non-

equilibrium on this reaction has not been derived. In the next

section the Landau Zener model of reaction rates will be applied to

the problem in an attempt to provide a theoretical basis for the

temperature dependence of the rates and to include the effect of

vibration and electronic nonequilibrium.
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THEORETICAL MODEL FOR DISSOCIATIVE ELECTRON RECOMBINATION

The perturbation potentials for collision of an electron with

an NO ÷ ion are represented by the 3-dimensional schematic of

Fig.(6). Potentials for the N+O repulsion and for the NO _

attractive well, when the free electron is at infinity, are shown

in the U vs. r plane, where r is the intermolecular separation
between the N and O atoms or between nuclear centers in the

vibrating NO r ion. The repulsive N+O potential is presumed to cross

at the ion's potential minimum; then the activation energy for

endothermic reaction is just the change in zero point chemical

energy and the activation energy for exothermic reaction vanishes,

which seems to be in accord with experimental observation. The

electron approaching the ion with kinetic energy E, is accelerated

as it falls into the strong Coulomb attractive potential (Eo-e2/r,),

which is drawn in the U vs. r. plane; r. is the distance between the

electron and the ion. Eventually the electron experiences a strong

repulsion as it encroaches on the space occupied by the ion's

electrons. This slows the electron to its initial kinetic energy

and opens the possibility of transition to the N+O system if the

vibrational configuration of the ion is nearly at the potential

crossing point to. Of course, electrons behave more like quantum

waves than classical particles in collision. However, except for

misrepresenting features like glory and rainbow effects, a

classical treatment is expected to cut through the average of the

quantum results.

Because of the large Coulomb attraction, the cross section

which leads to a close enough encounter to permit transition is

very large. The maximum miss distance _ which allows the electron

to come within some distance r" needed (the order of a Bohr radius)

varies about inversely with the original electron energy. This is

given by Eq.(ll) except that in this case the potential is

attractive

Irbm) 2 e2 e 2
__s _ _ 14 - Eq. (lla)

S" r* E e r* E e

The electron velocities will be the order of 100 times larger

than heavy particle velocities in the gas, so for most collisions

the transition probabilities are expected to be small. Then the

total probability of transition given by Eq.(8) is approximately
inversely proportional to the electron's velocity

P - 2 (I - e -a/u') , __2a . const
ue _z/2 Eq. (16)

_0

10
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Although this approximation is violated at very low collision

energies, these are relatively unimportant for exothermic reaction

as they are weighted so lightly by the Boltzmann distribution of

energies. Eqs. (lla) and (16) combine to give the functional

relation for total cross section which is inversely proportional to

the 3/2 power of the electron's kinetic energy

S cons t cons t

S _ S---?P _3/_ (kTo)3/2 x3/2 Eq.(17)
_e

Then the rate coefficient for transition has the form

Eq.(18) gives the functional dependence of the rate

coefficient for a favorable vibrational configuration of the NO _

ion. The probability Pv that an ion in vibrational state v is

within a small region 6 near the bottom of its potential well, and

thus within the reaction zone, is

Pv ru v 2 v{¢_ Eq. (19)

where r is 2_/e, the period of vibration. The overall rate

coefficient is obtained by summing the rate coefficients for each

state v weighted by the probability that the ion is in the v _

vibrational state, as in Eq.(5b)

k _ Q___e_v e-VS/Tv . I (gTv }_/2(v O) i/2 OvTo @
Sq.(20a]

Then approximating Q_ with the harmonic oscillator partition
function

T I/2 _OiTv )k _ _v ( 1 - e Eq.(20b)
T_

k T_ > 0 > const constT T I/2 Te=Tv=T > T3/_ Eq. (20c)
_e-V

Ii



At very high temperature the overall rate coefficient is
predicted to vary inversely with the electron temperature and
inversely with the square root of the vibrational temperature. In
many practical cases Te and Tv will be nearly equal, and if full
equilibrium obtains, the overall theoretical rate will vary as T"3/2
in accord with the experiments of Dunn and Lordi 25. The constant is
chosen so that at high temperature equilibrium the value will match
Dunn and Lordi's measurement, Eq.(15b); then the rate coefficient
for dissociative electron recombination with NO+ is

k - 3.0 x 1018
_r,vl/ 2

( 1 - e -342°/r'_) cc/mol-sec Eq.(21)

The temperatures are in °K. At very high temperature the

vibrational partition function and the sum over vibrational states

in Eq.(20a) should be truncated and anharmonic effects included.

However, since these appear in ratio with one another these

corrections will tend to be compensating. Since this reaction is

exothermic, the effect of excited electronic species with different

vibrational frequencies can be discounted, since the small

populations in these excited states have little effect on the total

rate observed. Thus Eq.(21) is assumed to be a relatively reliable

rate coefficient for the dissociative electron recombination with

the NO" ion. This function will next be used with the reaction's

equilibrium constant to determine the endothermic rate coefficient

for ionization resulting from collision of N and O atoms.

IONIZATION DUE TO N + O COLLISION

If the exothermic rate coefficient for NO r and electron

recombination is known, the endothermic rate for ionization due to

collisions between N and O atoms can be obtained by dividing the

exothermic rate with the equilibrium constant. However, in the

present case, a state of pseudo-equilibrium is considered where the

electron temperature, the vibrational temperature, and the heavy

particle kinetic temperature are approximately decoupled and

frozen. Then the exothermic rate is presumed given by Eq.(21),

while the equilibrium constant needs to be evaluated for the

pseudo-steady condition rather than at full equilibrium.

A pseudo-steady state of a chemically reacting mixture

requires that the change in chemical potential created by the

reaction must nearly vanish

A p - P_o" + Pe + P_ + Po " 0

- AE ° -kTin Q(NO +) -kT e in Q(e)

+ kT in Q(N) + kT in Q(O)

Eq.(22a)

12
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where the change in zero point energy is just

AE o E ° - E o - E o
-- NO* N 0

Eq.(22b)

since the zero point energy of the free electrons is taken as zero.

Then

AE ° Q(NO*) [Q(e)] TJT
!n Eq.(23)

kr Q(_O e(O)

This pseudo-steady relation differs from the full equilibrium

relation in that the electron partition function is raised to the

power T,/T due to the fact that the electrons have a different

kinetic temperature than the heavy particles.

The partition functions can be either pressure standardized or

concentration standardized 2". Since the number of mols is constant

in this reaction, the equilibrium constant is the same in either

case. The notation Qp(i) and Qc(i) will be used for the pressure

standardized and concentration standardized partition functions for

specie i, respectively.

AE° in Qp(NO*) [QpCe) ] TJT _ in

kT Qp(N) Qp(O)

Q<(NO +) [O<.(e)] TjT
- in

P,,,o" [P_] r,,/_

PN Po

- in nN, ), [nj T,/r

O_(N) Oc(O) n_,. n o

Eq.(24)

where p_ and n_ are the partial pressures and densities of species

i in the chosen standard units (typically atmospheres pressure and

either molecules/cc or mol/cc, respectively). In concentration

units, the equilibrium constant can be expressed

Keq - nNo* ne O • Qc(NO+) Qc(e) -AE°/kT Eq (25)
n_ n o Oc (N) Oc (O) e •

This has the same functional form as the full equilibrium constant

except for the correction factor G

1,]e ) (1 -TJT)G = Q_(e)
Eq.(26)

13



which is a function of the electron concentration n. and the
temperature ratio T,/T. G becomes unity when the kinetic
temperatures are equal, of course.

To the first order approximation the upper electronic states
are neglected and the diatomic species are considered rigid
rotating harmonic oscillators. Then the functional relations of
the concentration standardized partition functions are in standard
units of mol/cc

T_/2
Q(NO _) _ Eq.(27a)

(l_e-O/r_)

Q(e) _ w 3/2
_e

Eq.(27b)

Q(A0 _ T 3/2 Eq.(27c)

Q(O) _ T 3/2 Eq.(27d)

To this order, the functional expression for the equilibrium
constant is

kend ° 9.3/2
_e e _E/kT Eq. (28)

K c kexo _ G" T I/2 (l_e_O/rv)

and the form for the endothermic rate coefficient becomes

TzI2TI/2
V _e

konc_o - koxoK c _ G " T1/a e -aE/kr

> cons t T I/2 e -AE/kT

Tv-Te-T _ 0

Eq.(29)

The high temperature equilibrium limit is the same relation

proposed by Blottner _' and used by Gupta,et al'.

The constant of Eq.(29) is determined using quantitative

values of the partition functions. Again to first order,

neglecting upper electronic states and considering the diatoms as

rigid rotator harmonic oscillators, the logarithm of the

concentration standardized partition function is for the molecules

_-{ ) + In - in(l-e -eJT_) + in go

-51n T +31n M-8.0725-1n0z-ln(l-e -°Jr_)+In go2

Eq.(30a)

14
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while for the atoms it is

in Qc = _3 in T + -23In M - 8.0725 + In go Eq.(30a)

where M is the molecular weight in atomic mass units, 8_ the

rotational energy constant B/k in degK, 8v the characteristic

vibrational temperature _e/k in degK, and go the degeneracy of the

ground state, or low lying states, of electronic excitation. For

the species of interest here the concentration standardized

partitions functions in units of mol/cc are

5 In T- 40286 - in(1 - e -342Q/T_) Eq.(31a)
In ec(NO ÷) - -_

]n Q_(e) - in _ - 19.3324
2

Eq.(31b)

3 In T- 27276
In Qc(N) - _ Eq.(31c)

3 in T- 1 7164 Eq.(31d)
In ec(o) - -_

and the change in zero point energy is

A EO/k - 324000K Eq.(31e)

Accordingly, the first order approximation for the equilibrium

constant is

K - 1.218 x I0 s G •
Te3/2

T II_ (i - e-342°/Tv)

e-324oo/T Eq. (32)

and the endothermic reaction rate which results from multiplying

Eq.(28) with Eq.(21) is

kendo = 4. 8 X 10 I° G"

Tvl/2 qTl/2
_e

TI/2
e-32400/T cc/mol-sec Eq.(33)
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At high temperature equilibrium this rate approaches

kendo Te-Tv-T_ 0 > 4.8 X i0 z° T z/2 e -3240°/T cc/mol-sec Eq. (34 )

For concentration units in mol/cc, the free electron partition

function of Eq.(31b) is used and the correction factor G may be

expressed

- _log T e + 8.396) Eq.(35)
]og G - (I-TJT) ( log n_ 2

Fig.(7) shows the ratio of log G to (I-Te/T) as a function of

electron temperature Te for electron concentrations of i0 -_, 10 .7,

10 -9, and i0 -_ mol/cc. The highest density corresponds to about 10%

ionization at a total density of one amagat, and the smaller

densities correspond to smaller degrees of ionization or to smaller

total density at higher altitude, for example.

HIGHER ORDER PARTITION FUNCTIONS

At very high temperature some additional terms in the

partition functions become important because the upper electronic

states are excited and the effects of vibration-rotation coupling

and the anharmonicity of the diatomic species become more

significant. Jaffe 3° shows that more rigorous partition functions

for these species are duplicated reasonably well by the Dunham

potential approximation, for which the rotational-vibrational

energy of the diatomic particle is expressed in terms of the

quantum numbers j and v respectively

Err = Bj(j+I) [ _a2 ) j2(j_l)2 Eq.(36)

+ ov-(ox) v 2 - _vj(j+1)

Note that the older spectroscopic notation is used in Eq.(36),

which is sufficiently accurate for the purposes at hand, and that

the second rotational energy constant D (no relation to

dissociation energy) has been given the value (4B_/o 2) as derived by

Pauling and Wilson 3_ and Herzberg 32. The expression for the

partition function can be expressed

Q - Q_. _ gj e-_"kT Q:j Qvi (l+l_i T)
1

Eq.(37)

where the factors Qt, Qr_, and Qv_ are the usual separable partition

functions for translation, rotation, and vibration respectively.
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The summation is over all electronic states i with energy e_ and

degeneracy g_ ; Qr_ and Q_ come under the summation since the

rotational and vibrational constants all depend on the electronic

state, but Qt does not.

Mayer and Mayer 33 derive the factor F which corrects the result

for vibration-rotation coupling and anharmonicity for the case

where the temperatures are all in equilibrium. In the present

problem the electronic and vibrational temperatures are taken equal

to Tv and rotations are considered to be at equilibrium with the

kinetic gas temperature T. The correction factor rederived for

this state of nonequilibrium becomes

The rotational and vibrational constants for the different

electronic states have been tabulated in convenient short form by

Jaffe 3° and Park s. One additional correction that should be included

at high temperature is truncation of the rotational and vibrational

partition functions at the dissociation energy D so they do not

become infinite as they would for and infinity of states. The

separable rotational partition function then is

Qzi " k__TT( 1 - e -_ilwr) Eq. (38b)
Bi

while the separable vibrational partition function is

1 - e -Di/](Tv

Qvi " 1 - e _I/kTv Eq. (38c)

The ratio of the improved partition function for NO+, Eq.(37),

to the first order expression Eq.(30a) is graphed in Fig.(8) for

three ratios of vibration-electron temperature to kinetic

temperature: 1.0, 0.6, and 0.3. At 50,000°K the more exact

partition function can become 5 to i0 times larger than the

simplified low temperature expression, though diatomic species may

not last long at that temperature, of course.

The large multiplicity of electronic states of the atoms near

the ionization limit poses a problem; the partition functions grow

to infinity if all the states are included, but the effective

cutoff for these states is not so clear. Often the ionization

limit is lowered _' to the level where the free space available to

the outer electron is limited by the density of the gas, or by the

Debye shielding effect of electrons surrounding the ion which

17



truncates the range of the ion's Coulomb potential, or by
collisions with electrons which broaden the energy levels until
they effectively become part of the continuum for the free
electron. These criteria are awkward to use because they depend on
different properties of the gas mixture29; also the cutoffs are
generally at such high quantum numbers that the partition functions
are still suspiciously large. The table of electronic energy
levels for the atoms provided by Park s terminates at quantum level
i0, which might be sufficiently close to the ionization limit for
these almost exactly hydrogen eigenvalues. A simple cutoff will be
used here which should apply to the case where the electron density
is far below the equilibrium value at least; the upper electronic
states within about kT of the ionization limit I will be depleted
by rapid escape to the ionized continuum with few reverse reactions
to replenish these upper states, leaving a pseudo steady decreased
population in these states 3_'_. In order to provide a smooth
transition of the upper state populations, the equilibrium
distribution is multiplied by an effective cutoff function

ni = (l-e-_Ze_/kT_) gi e eJkf" Eq. (39)
n

Fig.(8) also shows the calculated ratios of the improved

partition functions to the first order functions for the N and O

atoms, again for three different ratios T./T.

The final correction to the equilibrium constant is the ratio

of Q(NO_)/Qo(NO _) to the product of Q(N)/Qo(N) and Q(O)/Qo(O) from

Fig.(8). This correction factor is shown on Fig.(9). Due to the

compensation provided by these ratios, the first order

approximation for the equilibrium constant is within a factor of

two of the more exact values at full equilibrium; the correction

rapidly approaches unity as the vibration electron temperature

decreases. In view of the approximations inherent in the model, a
further correction of this small amount seems unwarranted.

HEAVY MOLECULE COLLISION IONIZATION OF NO

The ionization of NO by collision with heavy molecules in the

gas is so infrequent that this reaction mechanism is usually much

less important at high temperature than the collision of N and O

atoms, although this reaction is sometimes included in schemes for

solving flow of chemically reacting air _,2'. However, this reaction

is particularly interesting in view of the fact that it is one of

the rare cases where measured collision cross sections ''_° can be

compared with an accepted rate coefficient.

The cross section function can be expressed

S 2y

S O x
q (l-q) Eq. (4o)
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where q is the Landau Zener probability that no transition takes

place at the potential crossing region

-c(xo/y) _'2 Eq. ( 41 )
G(Y) = e

The rate coefficient of Eq.(1) then becomes

k s - JSoF(Xo) e -xo Eq.(42)

where the Arrhenius preexponential factor F(Xo) is

F(x o) - 2 f q (l-q) y e -y dy
0

Eq.(43)

This integral was performed by numerical quadrature and the results

are given in Fig.(10) where the logarithm of F(Xo) is shown as a

function of the logarithm of (C2Xo). For the NO ionization cross

sections shown on Fig.(4), the constant c is about i0. When a

reasonably sized total cross section So of 10 -15 cm 2 is used, the

resulting rate coefficient is much smaller than the accepted rate
coefficient _,_'

ks . 2.2 x i0 Is e_lOSOOO/Z cc/mol-sec Eg. (44 )
T.3S

This occurs because the excited states are not included in the

computation, as they should be at high temperature. The total rate

is a summation over all excited states as in Eq.(5b)

i n -_ . (1-el/I)2 e x_ Eq. (45)

The cross sections are increased by (l-el/I) -2, where e_ is the

electronic energy of state i, to account for the increased size of

the excited state wave function, which in the upper states at least

is almost hydrogen like. The summation is approximated for all the

electronic, vibrational, and rotational states available to the NO

molecule. The resulting ionization rate coefficient is shown by

the dashed curve of Fig.(ll), where the reference total cross

section S O is chosen 1.6 x 10 -15 cm 2 so agreement is achieved at

i0000_. Note that this factor includes the fraction of collisions

which approach along the transition potential. The principal point

is that the functional dependence predicted by Eq.(45) can be

brought into reasonable accord with the simple Arrhenius expression

19



j-

r

ff-

7

of Eq.(44).

extrapolation

temperatures.

This lends some

of the Arrhenius

extra justification for the

function to much higher

CONCLUDING REMARKS

The Landau Zener theory of reaction cross section has been

used to derive a functional expression for dissociative electron

recombination with the NO r ion. The rate coefficient is predicted

to vary inversely with the electron temperature and the vibrational

partition function and directly with the square root of vibrational

temperature. At full equilibrium these temperatures equal the

kinetic temperature, in which case the rate coefficient varies

inversely with the square root of temperature at normal

temperatures and inversely with the 3/2 power of temperature at

temperatures that are large compared with the characteristic

vibrational temperature, 6_/k. This relation is more or less in

agreement with most of the experimental determinations made at both

normal and high temperatures, whereas the simple T -'z' variation that

has usually been used when making flow field calculations is unable

to simultaneously describe closely the observations over the entire

range of temperature. Since many of the flow fields around the new

generation of space vehicles will involve highly nonequilibrium

vibrational and electronic distributions, the specific variation of

the rate coefficient with each of these temperatures is required.

The present model is able to address this need in an approximate

manner, at least.

Unfortunately, measurements of cross section are not available

for dissociative electron recombination with ions. Thus,

comparison with the observed rate coefficient is the only way that

the appropriateness of the Landau Zener theory to these reactions

can be judged. However, in the case of a reaction of relatively

minor importance, heavy particle impact ionization of the NO

molecule, measured cross sections are available, at least for the

ground or low level vibrational and electronic states of the

molecule. The Landau Zener model can be adjusted to fit these

measured cross sections reasonably well and then integrated over a

Maxwell Boltzmann distribution of collision energies. The

resulting rate coefficient applies only to ground state NO and so

is much smaller than the total rate coefficient for a gas which

includes higher states of the molecule. However, when the excited

states are assumed to have the same functional form of cross

section and the total scattering size is taken as the size of the

outer electron wave function, the summation over all excited states

provides a rate coefficient in reasonable accord with the equation

that has been used to represent the total rate coefficient for

heavy particle collision ionization of NO.
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Fig.(2) SCHEMATIC DIAGRAM OF REACTION POTENTIAL SURFACES

Fig.(3) REACTION CROSS SECTIONS S/S o AS A FUNCTION OF

COLLISION ENERGY E/Eo

Fig.(4) REACTION CROSS SECTION FOR IONIZATION OF GROUND STATE

NO BY N2 COLLISIONS

Fig.(5) EXPERIMENTAL AND THEORETICAL RATE COEFFICIENTS FOR

DISSOCIATIVE ELECTRON RECOMBINATION WITH NO + IONS

Fig.(6) SCHEMATIC DIAGRAM OF POTENTIAL SURFACES FOR

e, NO +, AND N+O SYSTEMS

Fig.(7)

Fig.(8)

CORRECTION FACTOR FOR EQUILIBRIUM CONSTANT EXPRESSION

WHEN APPLIED TO PSEUDO-STEADY NONEQUILIBRIUM ELECTRON

TEMPERATURE CONDITIONS

RATIO OF CORRECTED PARTITION FUNCTIONS TO FIRST ORDER

EXPRESSIONS FOR NO +, N, AND O

Fig.(9) RATIO OF CORRECTED TO FIRST ORDER EXPRESSION FOR THE

EQUILIBRIUM CONSTANT OF THE N + O _ NO _ + e REACTION

Fig.(lO) PREEXPONENTIAL FACTOR FOR LANDAU ZENERRATE COEFFICIENTS

Fig.(ll) ENDOTHERMIC RATE COEFFICIENT FOR NO + N2 _ NO + + e + N2
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